A. 電影票房預測系統的介紹
電影票房預測系統,美國票房收入預測的先驅BarryLitman對美國80年代近700部電影進行分析推出票房收入預測模型。
B. 電影票房是如何計算的
行業常用的票房收入計算公式為「票房=總座位數×場次×上座率×平均票價×天數」。
但此公式只是一個演變轉化後的公式,而還是不完整的表達公式。
票房收入的表達為「票房收入=觀影人次×票價A+觀影人次×票價B+觀影人次×票價C…………」。若進行簡單的轉化,可得到「票房收入=總觀影人次×平均票價」。而展示公式也是在這基礎的表達式中衍生的,其中展示公式中「總座位數×放映場次×上座率」這三者乘積的實質就是「觀影人次」。因為在實際情況中更有條件找到「總座位數、放映場次、上座率」這個三個預測數據,因此才有了常用公式。
C. 電影票房是怎麼計算出來的
行業常用的票房收入計算公式為「票房=總座位數×場次×上座率×平均票價×天數」。
但此公式只是一個演變轉化後的公式,而還是不完整的表達公式。
在數學公式上要得到同樣運算結果可以有多種不同的是計算方式,如「9÷3-1」和「1+1」的結果都是等於2。但「9÷3-1」和「1+1」的表達方式就完全不一樣,「1+1」更為簡單易明。同理,常規票房預測公式也應該有更為簡單的表達式。要找到更簡單表達形式,首先要理解收入是怎樣構成的。
銷售收入(票房收入屬於銷售收入)通常的表達方式為「銷售收入=A產品數量×A產品單價+B產品數量×B產品單價+C產品數量×C產品單價…………」。為了方便統計和預測,一般轉化為「銷售收入=銷售數量×銷售產品的平均價格」。
參照以上方式,票房收入的表達為「票房收入=觀影人次×票價A+觀影人次×票價B+觀影人次×票價C…………」。若進行簡單的轉化,可得到「票房收入=總觀影人次×平均票價」。而展示公式也是在這基礎的表達式中衍生的,其中展示公式中「總座位數×放映場次×上座率」這三者乘積的實質就是「觀影人次」。因為在實際情況中更有條件找到「總座位數、放映場次、上座率」這個三個預測數據,因此才有了常用公式。
拓展資料:
票房(Box Office)原意是指公開出售電影或劇院門票的地方,現特指電影或戲劇的商業銷售情況。票房可以用觀眾人數或門票收入來計算。在現今的電影業中,票房已經成為衡量一部電影是否成功的重要指標之一。
票房在英文里的意思為「盒子辦公室」。這個詞來自於早期的戲院,要進入便宜的座位區需花費一個銅板,這個入場費是要放在位於入口閘門上一個鎖住的小箱子。當箱子裝滿的時候,會有工作人員將箱子拿進一個小房間進行清點並收藏。因此這個財務部門相關的小房間就被稱為「盒子辦公室」(Box Office)。
D. 電影票房分析及預測
從20世紀初的西洋鏡戲法到今天占據全球電影業總產值的三分之一強,資本的加入讓好萊塢在過去百年的發展中變得越來越理智--比起商業片流水線締造者,它更像一個數學家--它精於計算每一項決定對利潤的貢獻:《蝙蝠俠》續集是否要接受男演員片酬的獅子大開口以獲得百分之幾的忠實粉絲買票入場;是否要在動作片的第37分鍾增加感情戲以爭取女性觀眾;是否要為這部爛透了的原著聘請收費高昂的劇本醫生;一個小金人編劇的名頭到底值多少錢……這就是在電影開機之前最為重要的環節:票房預測。
華爾街不僅給好萊塢帶來了密集的資金支持,也帶來了理性的金融工程技術,後者好像一把衡量藝術的尺子。一位浸淫於電影行業的金融人士一語中的:"在這個行業里充斥著曖昧不清、晦暗不明,有真正的藝術家、也有忽悠的吹水者,但到底怎麼判斷是否能合作,項目是否有投資價值,全憑經驗"。
如何預測
早在80年代,美國票房收入預測的先驅BarryLitman對美國80年代近700部電影進行分析推出票房收入預測模型。該系統對之後美國電影投資界產生了顛覆性的影響。電影票房預測系統能分析預測不同種類電影的票房價值,已經成為國際電影產業投融資的重要參考工具,對電影產品定價及衍生產品開發都具有較強的指導作用。
預測系統
電影票房量化分析及預測系統(Box Revenue Prediction)是在考察導演、主要演員、製片、發行及市場營銷、電影生命周期、電影類型、發行地區等影響電影票房的諸多因素基礎上,基於資產定價模型,綜合採用金融工程和回歸統計分析方法研發出的預測系統。它能分析預測不同種類電影的票房價值,成為電影產業投融資重要參考工具,對電影產品定價及衍生產品開發都具有較強的指導作用。
中國第一套BRP系統
2012年1月,中影集團聯合艾億新融資本推出了國內第一套基於電影票房預測的估值與定價分析系統--BRP系統。通過對過去4年中600多部影片的統計分析,該BRP系統發現了6條有趣的現象:
·低成本的影片一般會比大片更賣座
·無名小卒主演的影片要比明星主演的影片利潤率更高
·類型的藝術特徵跟利潤之間不存在直接關聯,但評論的多寡(無論好評或者劣評)跟利潤之間有密切關系
·不含暴力、色情成分的家庭影片最容易賺錢
·大片的續集要比普通新片更容易賺錢
·明星在為影片帶來更高票房的同時,也往往拉低了利潤率,因為大部分收入進了明星的口袋
E. 怎樣預測票房
票房預測:需求與現實
從1896年西洋影戲傳入上海徐園,到1905年中國拍攝首部國產電影《定軍山》,再到2013年全國電影票房突破200億
大關,(4)有著百餘年歷史的中國電影產業,在近幾年呈現出飛躍式發展的態勢,無論是影片質量、院線建設還是投資規模都有了長足的發展。與此同時,隨著
「大數據」時代的到來,電影觀影群體、觀影偏好與心理、電影信息傳播和獲取方式也都在發生著深刻的變化。
毋庸置疑,多樣化資本的加入是中國電影不可或缺的發展引擎,然而,電影行業以投資回報率難以預測著稱,大投入未必有大產出,票房預測工具的缺失使得投資者
無法有效對沖投資風險,華人著名導演吳宇森的《風語者》就拖累了米高梅公司最終走向破產。因此製作與發行公司不得不考慮所有對票房有影響的因素:辣媽李小
璐對《私人訂制》票房貢獻幾何;《風暴》票房為何遠低於其金牌製片人江志強預期;被吐槽「爛片」的《富山春居圖》和《小時代》緣何票房卻一路走紅;成龍大
叔的《警察故事2013》有無必要拍成3D;《泰囧》的「報復性」觀影效應能否復現……這一切的一切其實都可以從「大數據」中找到答案。因為網路上的每一
次瀏覽、查詢乃至點擊所匯聚成的群體智慧都「蝴蝶效應」般地影響著電影的最終票房。
2013年Google在一份名為《Quantifying Movie Magic with Google Search》(5)
的白皮書中公布了其電影票房預測模型,該模型主要利用搜索、廣告點擊數據以及院線排片來預測票房,Google宣布其模型預測票房與真實票房的吻合程度達
到了94%,但並未見其公開對未上映電影的預測結果。
搜狗公司藉助「深思」系統,建立了更為復雜的模型,用於預測國內電影票房,並在新浪微博上提前發布了2013年12月國內上映電影的首周票房預測結果。很高興到目前為止預測結果與真實數據非常接近,同時,我們的模型還可以用於對影響票房的因素進行定量分析。
搜索查詢量的奧秘
搜狗搜索每天都響應上億次的搜索請求,查詢詞的分布和變化趨勢能夠很好的反映出中國網民的興趣點和關注指向。與Google的研究類似,我們也發現,電影
上映前相關查詢詞的搜索次數與票房收入有著很強的關聯性。這一點很好理解,用戶的主動搜索行為體現了用戶對這部電影的潛在興趣。
我們選取了2013年1-11月國內上映的180部電影的票房和上映前的搜索量數據作為訓練集,用於訓練一個基礎的線性回歸模型。實驗發現,單純利用搜索
量訓練得到的模型,預測得到的首周票房與真實票房的相關度R方值僅為68%,這與Google僅用搜索數據得到的結果70%很接近。(註:R方值取值為0
至1,值越大表示模型預測效果越好),這個結果也說明無論在中國還是美國,用戶的搜索行為是很相似的。
用搜索量來進行預測票房是一個好的開始,但是准確度還遠遠不夠。同時很多搜索詞還存在歧義的情況,比如《生化危機》,既是電影也是游戲,混在一起會造成票
房預測值偏高。進一步研究發現,游戲意圖的查詢請求量較為平穩,但電影意圖的查詢請求在上映前則有一個高峰,也可以通過用戶點擊的URL來進一步確認用戶
的搜索意圖。因此模型需要再引入查詢量的變化趨勢和用戶點擊的分布情況。修正後的模型可以達到74%的准確度,這時模型已經可以對電影票房進行一個粗略的
估計。
社交媒體:用戶的情感分析
社交媒體數據對票房預測也會有一定幫助。假設你是某個明星的粉絲,打算去看他主演的電影,那麼你很可能會提前轉發該電影的相關微博給你的朋友。國外已經有
很多預測項目都是在針對Twitter數據做研究,這里我們主要採用國內部分微博網站的數據來進行預測。通過自然語言理解技術,分析出用戶對未上映影片的
情感傾向,從而轉換為用戶的觀影需求。進一步可以考慮的因素包括微博轉發深度、評論活躍程度,以及相關微博數量隨電影上映日期臨近的變化趨勢,這些數據都
可以被有效的提煉為特徵並加入到模型中。
微博數據的加入使得准確率超過了80%。
結語
預測專家納特·西爾弗在《信號與雜訊:大數據時代預測的科學與藝術》一書中提到,大數據時代的預測更容易失敗,大部分失敗的預測都源於一種盲目的自信,用精確的預測來冒充准確的預測。
對此我們有著清醒的認識,目前的票房預測模型還有若干需要改進的方向。首先,目前模型的主要思想是通過電影上映前的用戶關注度來推算首周票房,這實際上沒
有考慮電影上映後的口碑對票房的影響;其次,模型較為依賴歷史數據,可能難以識別一些上映後脫穎而出的小成本「黑馬」電影;再次,目前的技術只能提前10
天預報出首周票房,還可以更加超前。
總體而言,「深思」系統代表了搜狗公司在社會化預測方面一些新的嘗試。我們試著從繁雜的海量數據中篩選出真正的信號,努力穿越不確定性的迷霧,區分出未來
圖景的哪些部分可以預測,哪些不可預測。通向這個未來的道路還在探索之中,但目前工作已經取得了一些不錯的進展,並給予了我們更大的信心。
F. 電影票房預測系統的BRP(電影票房量化分析系統)的三大特點
BRP系統每周總票房的范圍預測法通過自適應分類,可根據電影知識庫中各周電影票房分布進行票房等級分類,使每周預測的票房范圍更為精確,縮小預測范圍。同時,其最終估值范圍通過波動性提示並衡量了相關風險的存在。這對於投資製片方進行有針對性的風險度量、風險管理及防範都具有重要意義。由於電影產業影響票房業績的變數眾多,蘊含復雜的系統及非系統風險,BRP系統能將之定量化並確定總體風險收益規模,無論對於即期電影發行,還是後續衍生開發,都具有重要的指導性。
G. 大數據 如何驅動電影產業
大數據 如何驅動電影產業
近日,谷歌公布研發了一個准確率高達94%的電影票房預測模型,據其統計,電影相關的搜索量與票房收入之間存在很強的關聯性。此票房預測模型正是大數據分析技術在電影業的一個應用案例。此前,大獲成功的美劇《紙牌屋》也是美國視頻網站NetFlix基於大數據投資拍攝的這部電視劇。隨著越來越頻繁地被提及,「大數據」是否能成為中國電影的新驅動?
「大數據不能代替創作行為」
電影產品不同於其他產品的最大特點,就是它的非理性占很大比例。它的體驗性消費很難用一個數據去分析、前瞻。我認為,大數據就是在海量數據面前,用軟體上的技術分析,幫你把所有行為通過數據方式整理出來。但是這是基於已經發生過的事情,它的價值在於為你未來做什麼東西提供一些方向。所以說,數據分析可以給我們一些參考的價值,但是我認為其不能代替創作行為。
「大數據應預測未來」
大數據是我們所有的產品平台里一個最核心的關鍵詞。整個視頻行業大數據有三方面:用戶大數據、內容大數據、渠道大數據。在互聯網時代,這三大數據將融合在一起。現在由點擊量很高的原創網路文學作品改編的電視劇劇本,已經被證明有比較好的收視率,這是簡單的商業模式。更重要的是如何基於這三大數據,更好地用現在的數據預測未來?這在短時間內是非常重要的挑戰。
「學會洞察大數據是關鍵」
時代在變,消費者在變,我們要跟隨這種變化趨勢。萬達的電影院很早就已經開始變了,資料庫已成為我們重要的核心「礦藏」,到今年底建立會員資料庫達到600萬、AMC達到400萬。大數據能否發揮作用,取決於看到這個數據的人能不能通過大數據做事情。在信息、數據特別多的當下,如果沒有洞察之心或洞察之力,有可能被數據吞噬。
以上是小編為大家分享的關於大數據 如何驅動電影產業的相關內容,更多信息可以關注環球青藤分享更多干貨