導航:首頁 > 電影推薦 > 電影推薦評分推薦系統

電影推薦評分推薦系統

發布時間:2022-07-14 06:55:12

1. 模擬一個基於朋友圈的電影推薦系統。 設定目前微信總用戶有1000人,每個人均有自己的朋友圈,每個人

你這種要花大勞動力的不是100財富值能解決的。還是去相關的僱傭網站上發布需求吧。價格估計不低。

2. 電影推薦系統是用java寫還是paython寫好一點

我覺得用java好一些。
java是一門面向對象的編程語言。java語言具有功能強大和簡單易用兩個特徵,具有簡單性、面向對象、分布式等特點,可以編寫桌面應用程序、Web應用程序、分布式系統和嵌入式系統應用程序等。
Python目前的應用領域比較廣泛,目前Python的主要方向分為後端開發、數據分析、網路爬蟲、機器學習等。

3. 電影推薦系統沒有管理員可以嗎

不可以。管理者是管理行為過程的主體,在推薦系統中需要維持秩序,沒有管理員是不可以的,因為管理員可以使系統正常運行,從而得到更多用戶的喜愛。

4. Amazon推薦系統是如何做到的

亞馬遜使用了哪些信息進行推薦:

1)當前瀏覽品類

2)與當前商品經常一同購買的商品

3)用戶最近瀏覽記錄

4)用戶瀏覽歷史(長期)中的商品

5)用戶瀏覽歷史(長期)相關的商品

6)購買相同商品的其它用戶購買的物品

7)已購商品的新版本

8)用戶購買歷史(如近期購買商品的互補品)

9)暢銷商品

2、推薦系統模型:U x S → R

1)U是用戶矩陣

2)S是物品矩陣

3)R是用戶對物品的喜愛程度,推薦系統就是基於現有的信息填補R矩陣

3、常用推薦演算法

1)基於內容:易實現,效果好,但是如何獲得一個物品的內容、相似度如何定義等有些情況下會較難把握

2)協同過濾:基於物的協同過濾與基於人的協同過濾

3)矩陣分解(SVD):用戶-物品評分矩陣A很大且稀疏,將A分解為用戶矩陣(用戶潛在因子)和物品矩陣(物品潛在因子),目標是這兩個矩陣的乘積盡可能接近R。缺點是只利用了評分信息,忽略了用戶屬性和物品屬性

4)因子分解機(FM):將SVD推廣到多類潛因子的情況,如分解為 用戶、物品、用戶性別、用戶年齡、物品價格 等多個因子,允許因子之間有相關關系(如下圖,方程前半部分是線性回歸,後半部分加入了兩兩因子間關系)

5)深度學習:訓練深度神經網路,輸入用戶id,輸出層做softmax,得到對每個物品id的權重

6)機器學習排序

7)探索與利用:先對用戶聚類(如分為abcde五類),隨機對a中的用戶1和b中的用戶2推薦電影,如果用戶1沒點擊,2點擊了,說明b類用戶可能對該電影更感興趣。

8)集成:對上述多種方法的ensemble

5. 電影推薦系統包括什麼功能

電影推薦系統功能包括票房統計,評分推薦,電影類型推薦。

項目流程:首先獲取用戶id,刪除用戶之前存在的推薦結果,裝載樣本評分數據(不同用戶對不同電影的評分數據:userid、 movieid、rating、timestamp )。然後裝載電影信息數據(從movieinfo表中取出movieid、moviename、typelist)。

註:樣本評分數據和電影信息數據以.dat文件的形式被傳入HDFS中。

將樣本評分數據切分成3部分,60%用於訓練(訓練集)、20%用於校驗(校驗集)、20%用於測試(測試集)

訓練不同參數下的模型,並在校驗集中校驗,找出最佳模型。

設置參數(隱語義因子的個數、ALS的正則化參數、迭代次數),將設置的參數和訓練集作為參數傳入到spark MLlib庫的ALS()函數中,得到推薦模型,調整參數會得到多個不同的模型。

校驗方法:

將校驗集裝入模型中,得到用戶對電影的預測評分,計算預測評分和實際評分的均方根誤差,找出多個模型中均方根誤差最小的模型作為最佳模型。

用最佳模型預測測試集的評分,並計算預測評分和實際評分的均方根誤差,改進最佳模型。

用最佳模型預測某用戶對電影信息數據集中的所有電影的評分,選出評分最高的前十部電影。將推薦結果存入資料庫recommendresult表中

————————————————

版權聲明:本文為CSDN博主「塞奈」的原創文章,遵循CC 4.0 BY-SA版權協議,轉載請附上原文出處鏈接及本聲明。

原文鏈接:https://blog.csdn.net/qq_44459219/article/details/118416465

6. 電影推薦系統中電影類型怎麼弄

建軍大業

9.4分加入收藏
主演:劉燁朱亞文黃志忠王景春
導演:劉偉強
類型:動作戰爭其它
時長:127分鍾
年代:2017
地區:內地
語言:漢語普通話
簡介

7. 學IT的,寫了一個電影推薦系統,但是為什麼評分預測值大於五

全文以「預測電影評分」例子展開

r(i,j)=0則表明user_j沒有對movie_i 沒有評分,

推薦系統要做的就是通過預測user_j對這些movie {i|r(i,j)=0}的評分來給user_j 推薦其可能會喜歡的電影<預測評分較高的movie>

=======================================二、基於內容的推薦=======================================

對每個movie_i引入特徵x(i)=(x1, x2),這種特徵可能表明user對movie類型的偏好:浪漫or動作等

對於每個user引入一個參數theta,然後對評分矩陣的每列(對應一個user)做線性回歸,數據是{ (x(i), y(i,j)) |r(i,j)=1,for some j all i}

像機器學習一樣,x(i)添加個1變數x(i)=(1, x1, x2)

那麼對於未評分的movie_t,我們可以使用線性回歸訓練的參數theta與對應特徵x(t)做內積來得到其預測評分

對每個用戶都訓練一個參數theta_j,優化模型如下:

優化演算法:注意正則項是不約束x(i)=(1, x1, x2)中1對應的參數theta的第一項theta0,所以k=0與k=1,2分別對待

=======================================三、協同過濾=======================================

現在換個角度:如果知道theta for all user j,如何來預測x(i) = (x1, x2) all i

仍然可以使用線性回歸,為訓練每個x(i),需要評分矩陣的第i行數據{ (x(i), y(i,j)) |r(i,j)=1,for some i all j}

theta_j = (0, theta1, theta2) ;theta1=5說明user_j喜歡romance類movie, theta2=5說明user_j喜歡action類movie,只能有一個等於5哦,

我覺得也可以是:theta_j = (0, 4, 1) ;喜歡romance 4 action 1.

對應的優化:

協同過濾:交替優化theta與x

=========================================四、協同過濾演算法=======================================

優化:

優化:注意去掉了theta和x的添加項

=========================================五、實現細節補充=======================================

實現細節:

如果有user沒有對任何電影評分或者所有評分的電影都是0分,那麼所學習到的參數是零向量,

則預測都是0值,這是不合理的。通過 將評分矩陣減去其行均值再進行線性回歸來「避免」這種情況

=========================================六、一點思考==========================================

協同過濾那塊,同時優化theta、x,這樣得到的theta、x還有特定的意義<比如:x是否還表徵對影視類型的喜愛與否>沒有?

回歸中,在x數據上不添加1-feature是不是因為後來引入的平均值化;如果不是,那會對結果有什麼影響?

用x-feature來表徵一個movie,x-feature的各分量的可解釋性;應該會有一部分user應為演員的緣故有一些"偏愛"。

這里,講的"基於內容的推薦"與"協同過濾"跟以前對這兩個詞的認識/所指內容不同,查清楚、搞明白。

這周還會再更一篇關於此節課的演算法實現,會對上述部分問題做出回答。

8. 如何將基於hadoop的電影推薦系統的推薦結果用網頁面顯示出來

一般主要為: 演算法思想 基本構架 運行流程 任務力度

9. 演算法的健壯性是其主要評價之一對嗎

演算法的健壯性是其主要評價之一。

健壯性是指標之一。評價一個演算法好壞的基本原則之一是演算法的健壯性,所謂的健壯性指的是演算法能對意外情況做出適當反映或進行相應處理,所以根據這個定義,健壯性越好的演算法,其運行效果就越好。

演算法的由來:

演算法最先被知道的就是推薦演算法。研究起源於20世紀90年代,由美國明尼蘇達大學GroupLens研究小組最先開始研究,他們想要製作一個名為Movielens的電影推薦系統,從而實現對用戶進行電影的個性化推薦。

首先研究小組讓用戶對自己看過的電影進行評分,然後小組對用戶評價的結果進行分析,並預測出用戶對並未看過的電影的興趣度,從而向他們推薦從未看過並可能感興趣的電影。

此後,Amazon開始在網站上使用推薦系統,在實際中對用戶的瀏覽購買行為進行分析,嘗試對曾經瀏覽或購買商品的用戶進行個性化推薦。根據 enture Beat的統計,這一舉措將該網站的銷售額提高了35%自此之後,個性化推薦的應用越來越廣泛。

10. 推薦系統的主要推薦方法

基於內容的推薦(Content-based Recommendation)是信息過濾技術的延續與發展,它是建立在項目的內容信息上作出推薦的,而不需要依據用戶對項目的評價意見,更多地需要用機 器學習的方法從關於內容的特徵描述的事例中得到用戶的興趣資料。在基於內容的推薦系統中,項目或對象是通過相關的特徵的屬性來定義,系統基於用戶評價對象 的特徵,學慣用戶的興趣,考察用戶資料與待預測項目的相匹配程度。用戶的資料模型取決於所用學習方法,常用的有決策樹、神經網路和基於向量的表示方法等。 基於內容的用戶資料是需要有用戶的歷史數據,用戶資料模型可能隨著用戶的偏好改變而發生變化。
基於內容推薦方法的優點是:1)不需要其它用戶的數據,沒有冷開始問題和稀疏問題。2)能為具有特殊興趣愛好的用戶進行推薦。3)能推薦新的或不是很流行的項目,沒有新項目問題。4)通過列出推薦項目的內容特徵,可以解釋為什麼推薦那些項目。5)已有比較好的技術,如關於分類學習方面的技術已相當成熟。
缺點是要求內容能容易抽取成有意義的特徵,要求特徵內容有良好的結構性,並且用戶的口味必須能夠用內容特徵形式來表達,不能顯式地得到其它用戶的判斷情況。 協同過濾推薦 (Collaborative Filtering Recommendation)技術是推薦系統中應用最早和最為成功的技術之一。它一般採用最近鄰技術,利用用戶的歷史喜好信息計算用戶之間的距離,然後 利用目標用戶的最近鄰居用戶對商品評價的加權評價值來預測目標用戶對特定商品的喜好程度,系統從而根據這一喜好程度來對目標用戶進行推薦。協同過濾最大優 點是對推薦對象沒有特殊的要求,能處理非結構化的復雜對象,如音樂、電影。
協同過濾是基於這樣的假設:為一用戶找到他真正感興趣的內容的好方法是首先找到與此用戶有相似興趣的其他用戶,然後將他們感興趣的內容推薦給此用 戶。其基本思想非常易於理解,在日常生活中,我們往往會利用好朋友的推薦來進行一些選擇。協同過濾正是把這一思想運用到電子商務推薦系統中來,基於其他用 戶對某一內容的評價來向目標用戶進行推薦。
基於協同過濾的推薦系統可以說是從用戶的角度來進行相應推薦的,而且是自動的即用戶獲得的推薦是系統從購買模式或瀏覽行為等隱式獲得的,不需要用戶努力地找到適合自己興趣的推薦信息,如填寫一些調查表格等。
和基於內容的過濾方法相比,協同過濾具有如下的優點:1) 能夠過濾難以進行機器自動內容分析的信息,如藝術品,音樂等。2) 共享其他人的經驗,避免了內容分析的不完全和不精確,並且能夠基於一些復雜的,難以表述的概念(如信息質量、個人品味)進行過濾。3) 有推薦新信息的能力。可以發現內容上完全不相似的信息,用戶對推薦信息的內容事先是預料不到的。這也是協同過濾和基於內容的過濾一個較大的差別,基於內容的過濾推薦很多都是用戶本來就熟悉的內容,而協同過濾可以發現用戶潛在的但自己尚未發現的興趣偏好。4) 能夠有效的使用其他相似用戶的反饋信息,較少用戶的反饋量,加快個性化學習的速度。
雖然協同過濾作為一種典型的推薦技術有其相當的應用,但協同過濾仍有許多的問題需要解決。最典型的問題有稀疏問題(Sparsity)和可擴展問題(Scalability)。 基於關聯規則的推薦 (Association Rule-based Recommendation)是以關聯規則為基礎,把已購商品作為規則頭,規則體為推薦對象。關聯規則挖掘可以發現不同商品在銷售過程中的相關性,在零 售業中已經得到了成功的應用。管理規則就是在一個交易資料庫中統計購買了商品集X的交易中有多大比例的交易同時購買了商品集Y,其直觀的意義就是用戶在購 買某些商品的時候有多大傾向去購買另外一些商品。比如購買牛奶的同時很多人會同時購買麵包。
演算法的第一步關聯規則的發現最為關鍵且最耗時,是演算法的瓶頸,但可以離線進行。其次,商品名稱的同義性問題也是關聯規則的一個難點。 由於各種推薦方法都有優缺點,所以在實際中,組合推薦(Hybrid Recommendation)經常被採用。研究和應用最多的是內容推薦和協同過濾推薦的組合。最簡單的做法就是分別用基於內容的方法和協同過濾推薦方法 去產生一個推薦預測結果,然後用某方法組合其結果。盡管從理論上有很多種推薦組合方法,但在某一具體問題中並不見得都有效,組合推薦一個最重要原則就是通 過組合後要能避免或彌補各自推薦技術的弱點。
在組合方式上,有研究人員提出了七種組合思路:1)加權(Weight):加權多種推薦技術結果。2)變換(Switch):根據問題背景和實際情況或要求決定變換採用不同的推薦技術。3)混合(Mixed):同時採用多種推薦技術給出多種推薦結果為用戶提供參考。4)特徵組合(Feature combination):組合來自不同推薦數據源的特徵被另一種推薦演算法所採用。5)層疊(Cascade):先用一種推薦技術產生一種粗糙的推薦結果,第二種推薦技術在此推薦結果的基礎上進一步作出更精確的推薦。6)特徵擴充(Feature augmentation):一種技術產生附加的特徵信息嵌入到另一種推薦技術的特徵輸入中。7)元級別(Meta-level):用一種推薦方法產生的模型作為另一種推薦方法的輸入。

閱讀全文

與電影推薦評分推薦系統相關的資料

熱點內容
ktv胖子跳舞什麼電影 瀏覽:394
3d電影上下兩個 瀏覽:319
外國經典動畫電影 瀏覽:196
最火電影導演孫傳林 瀏覽:192
法國慈禧太後電影 瀏覽:115
劉德華搶一輛跑車是什麼電影 瀏覽:442
二戰電影城堡 瀏覽:599
江波愛情電影 瀏覽:584
電影他來自美國在線 瀏覽:601
唐山電影票團購 瀏覽:497
功夫電影里的功夫是什麼 瀏覽:195
法國在俄羅斯戰爭電影叫什麼 瀏覽:239
靜態3d電影下載 瀏覽:385
什麼電影軟體比較好 瀏覽:322
三大電影節影帝影後沒什麼含金量 瀏覽:114
有哪些三d電影 瀏覽:802
韓國暴力的動作電影排行榜前十名 瀏覽:983
下載各種電影軟體是什麼 瀏覽:823
電影解說大v排行榜 瀏覽:395
好看的日本校園懸疑電影 瀏覽:110